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Abstract
Elastic constants of LaNi5H7 and LaNi5 are calculated by a first principles
pseudopotential method using plane-wave basis sets. Some extra calculations
using model clusters were made in order to discuss the magnitude of chemical
bondings. Inner displacements associated with all deformation modes are taken
into account. Elastic constants are smaller and more isotropic in the hydride
than those in the host. The electronic mechanism to determine the change in
the elastic properties is investigated from the viewpoint of chemical bonding.
Strong Ni–H bonds are formed in LaNi5H7 at the expense of Ni–Ni bonds. They
play key roles in determining the elastic properties. The isotropic distribution
of the Ni–H bonding charge in LaNi5H7 should be responsible for the isotropic
elastic constants. Hydrogen atoms are found to relax considerably during the
deformation to maintain the Ni–H bond length. When the inner displacements
are ignored, the elastic constants of LaNi5H7 are as large as those of LaNi5.
However, the remarkable displacement of hydrogen atoms during the elastic
deformation plays an essential role in softening by hydrogenation.

1. Introduction

Energy conversion/storage devices fabricated using metal hydrides play very important roles
in modern technology in which clean and efficient energy production is required. LaNi5-
based alloys have been known to show good hydrogen storage characteristics suitable for
a wide range of applications such as negative electrodes for rechargeable Ni–metal hydride
batteries [1–3]. Although there have been numerous reports on the engineering aspects of
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these alloys, fundamental information is still very limited. For example, the crystal structure
of the full hydride, LaNi5H6−7 has not been definitively established by neutron diffraction
experiments [4]. In our previous report, we systematically calculated various phases of the
LaNi5–H system [5]. Atomic structures of the full hydride, LaNi5H7, were examined in detail.
The preferred hydrogen site and its local environment in the primary solid solution were also
investigated. Theoretical formation energies of these phases were discussed, together with
other phases of intermediate compositions. Although elastic constants are very important for
designing materials from engineering viewpoints, no measurements on any LaNi5 hydrides
have thus far been reported. Only the elastic constants of LaNi5 have been reported by Tanaka
et al [6] for a single crystal using a resonance vibration method. LaNi5 samples are usually
pulverized during the hydrogenation process because of the huge internal strain induced by the
volume expansion. No single crystals of the hydrides sufficiently large for elastic measurements
have been available because of the pulverization. Reliable theoretical calculations that reveal
the elastic properties of the hydrides have therefore been strongly desired.

The present study aims to evaluate the elastic constants of the full hydride phase,
LaNi5H7. Although the electronic structure of LaNi5–H systems has thus far been calculated
repeatedly [5, 7–14], no elastic property has been described by means of any quantum
mechanical calculations. In the present study, we report theoretical elastic constants of
LaNi5H7/LaNi5 for the first time. Then we discuss the atomic/electronic mechanism to
determine the change in the elastic properties due to the hydrogenation.

2. Computational details

A plane-wave basis pseudopotential (PW-PP) method [15]4 has been employed, which is the
same as the one used in [5]. Atomic structures were fully optimized for LaNi5 and LaNi5H7

as described in the report [5]. Elastic constants were calculated using crystal parameters
optimized in [5]. LaNi5 exhibits a hexagonal structure with the space group P6/mmm
(CaCu5-type structure) [16]. We use a model of LaNi5H7 having the hypothetically ordered
structure. Because the space group of the hydride was hardly determined uniquely within
the computational accuracy, we have chosen a structure with the space group P63mc, for
simplicity. Detailed results on the atomic structures of hydrides are shown in [5].

Electron exchange–correlation effects were taken into account using the Perdew–Wang
form of the generalized gradient approximation (GGA) [17]. In order to reduce the number
of plane waves, ultrasoft pseudopotentials [18] were employed for all ions, i.e., La, Ni and
H. The pseudopotentials were constructed for neutral atoms. The La-4f orbital was therefore
not included. The ultrasoft potential for H was recently reported to be useful for an accurate
description of H in complex solids [19]. With these pseudopotentials, the plane-wave cutoff,
Ecut was chosen to be 380 eV. The convergence of the elastic constants is smaller than 2% up
to Ecut = 800 eV. The k-points used for numerical integration were chosen at the mesh points
by Monkhorst and Pack’s scheme [20]. The mesh points corresponded to 75 and 32 k-points
throughout the entire Brillouin zone (BZ) of LaNi5 and LaNi5H7, respectively. Convergence of
the total energies with respect to the number of k-points was verified up to 196 and 96 k-points
throughout the entire BZ of LaNi5 and LaNi5H7. It was found to be better than 0.01 eV/unit
formula. The convergence of the elastic constants was found to be smaller than 0.2% up to
the above k-points. Spin polarization was not taken into account because the effect of the spin
polarization on the total energy was well below the computational accuracy. The quantum
nuclear effect of hydrogen was disregarded throughout the present study.

4 The present calculations were performed using the CASTEP program code (Accerlys, Inc., San Diego, CA).
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3. Results

The internal energy of a crystal under an infinitesimal strain of α, E(V , α), can be expressed
as [21, 22]

E(V , α) = E(V0, α) + V0

(∑
i

τiξiαi + 1
2

∑
i, j

Ci jαiξiα jξ j

)
+ O(α3), (1)

where V0 denotes the volume of the unstrained system. We use the Voigt notation in equation (1)
whereby xx is replaced by 1, yy by 2, zz by 3, yz (and zy) by 4, xz (and zx) by 5, and xy (and yx)
by 6. The factors ξi have the conventional meaning used to introduce the Voigt notation, and
are unity if the Voigt number is 1, 2, or 3, and 2 if the Voigt number is 4, 5, or 6. τi is an element
in the stress tensor. There are five independent elastic constants for a hexagonal crystal, i.e.,
C11, C12, C13, C33 and C44. We need a set of five independent total energy calculations, in
principle. Elastic constants can also be calculated from quantum mechanical forces obtained
under given stresses, which may be computationally less demanding. In the present study,
however, crystals were deformed in six different ways to obtain total energy as a function of
strain. The elastic constant for each deformation mode was then obtained from the curvature of
the total energy-strain curve. Five elastic constants were obtained on five deformation modes.
The sixth deformation mode was used to check the numerical accuracy of the five constants. In
addition to the energy, the magnitude of atomic displacements associated with all deformation
modes were examined in detail.

The first deformation mode can be described as( 1 + α 0 0
0 1 + α 0
0 0 1

)
. (2)

This mode changes the size of the basal plane while the c-axis remains. The elastic constant
obtained for this mode corresponds to C11 + C12. The second mode stretches the c-axis while
the basal plane remains, i.e.,( 1 0 0

0 1 0
0 0 1 + α

)
. (3)

The elastic constant corresponds to C33/2 for this mode. The third deformation increases the
a-axis and decreases the b-axis. The matrix is( 1 + α 0 0

0 1 − α 0
0 0 1

)
, (4)

which corresponds to C11 − C12. The fourth mode expressed by( 1 0 0
0 1 α

0 α 1

)
, (5)

corresponds to 2C44, which is equivalent to 2C55. The fifth deformation expressed as( 1 + α 0 0
0 1 + α 0
0 0 1 − 2α

)
, (6)

corresponds to C11 + 2C33 + C12 − 4C13. Five independent constants can be determined by the
deformations given by equations (2)–(6). In addition to these five modes, we have calculated
the bulk modulus, B , for the deformation given by
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Table 1. Elastic constants of LaNi5 and LaNi5H7 in GPa. Theoretical elastic constants with and
without inner displacements are showed in the left (rigid model) and right (+inner displacement)
columns, respectively. The bulk modulus, B , was calculated from the deformation given by
equation (7).

LaNi5 LaNi5H7

Theory Theory

Elastic Rigid +inner Rigid +inner
Constants model displacement Experimenta model displacement

B 143 143 127 140 130
C11 218 218 190 230 190
C33 266 — 230 231 188
C12 107 108 96.9 107 97
C13 93 — 84.8 96 108
C44 67 67 59.9 52 35
C66 56 55 46.6 61 46

a Reference [6].

( 1 + α 0 0
0 1 + α 0
0 0 1 + α

)
. (7)

B is not independent of the above five equations, and is expressed by

B = 2

9

(
C11 + C12 + 2C13 +

C33

2

)
. (8)

We calculated B using equation (8) and using the sixth deformation mode in order to confirm
the computational accuracy. Theoretical elastic constants were determined from seven data
points with different α in the range of |α| � 1%. The range was chosen so as to make the
O(α3) term in equation (1) negligible and the elastic energy increment with α computationally
reliable. Elastic constants were also calculated with α in the range of |α| � 2%. We found
the difference in the elastic constants to be smaller than 2%.

When a crystal of complicated structure is deformed, not only its cell constants but also
some internal parameters can be changed within the space group of the deformed crystal. The
displacement of the internal parameters has been pointed out to contribute non-negligibly to
the calculation of elastic constants in some systems [21, 23–29]. We will hereafter refer to such
displacements as inner displacements. In the present study, elastic constants were calculated
in two ways, i.e. with and without the inner displacements. The inner displacements were
limited so that the space groups of the deformed crystals with and without relaxation were
identical. For LaNi5, the optimization of the internal parameters was possible only for the
deformation modes of C44 and C11 − C12. On the other hand, for LaNi5H7, the relaxation
can be taken into account for all deformation modes. The geometry was optimized using the
BFGS technique [30] such that the forces on the atoms derived from the Hellman–Feynman
theorem were smaller than 0.05 eV Å−1.

Theoretical elastic constants obtained in the present study are summarized in table 1
together with previously reported experimental values for LaNi5 [6]. B has been calculated
in two ways, i.e., using equations (7) and (8). The two values agree with each other within
an error of 0.3 and 2.2% for LaNi5 and LaNi5H7. Experimental values were obtained at room
temperature using 46 resonance frequencies ranging from 400 to 1800 kHz, by the rectangular
parallelepiped resonance method [6]. Errors associated with the experiments were smaller
than 1%. Although the theoretical elastic constants are greater than the experimental values
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Figure 1. Orientational dependence of Young’s moduli: (a) LaNi5 by theory and experiment. The
experimental one is from [6]. (b) LaNi5H7 in comparison with LaNi5. For LaNi5H7, both the
results with and without inner displacements are presented.

by 10–18%, the relative Ci j values agree satisfactorily. The reason for the discrepancy in
the absolute values is not fully understood. There may be some temperature dependence; the
values at room temperature may be 5–10% smaller than the values at zero temperature, in
analogy to Ti and Ti3Al reported previously by Tanaka and Koiwa [31].

Two points can be noteworthy from table 1.

(1) Inclusion of inner displacements significantly reduces most of the Ci j s in LaNi5H7,
whereas no significant changes can be noted for LaNi5.

(2) The magnitude of anisotropy among Ci j s differs between LaNi5 and LaNi5H7.

In LaNi5, C33 is larger than C11, while they are almost the same in the hydride. C44 is
larger than C66 in LaNi5, while the tendency is reversed in the hydride. These trends can
be seen in both cases with and without inner displacements. C33 and C11 are resistances to
tensile or compressive deformation along the z- and x-directions, respectively. C44 and C66

are resistances to shear on the basal plane and that along the a-direction on a prism plane,
respectively. The ratios of C33/C11 and C44/C66 larger than unity in LaNi5 indicate strong
elastic anisotropy along c-axis. The anisotropy is less significant in the hydride.

These two features can be visualized by plotting the orientation dependence of Young’s
modulus calculated according to the following equation [32]:

EY(θ) = 1

(1 − cos2 θ)2S11 + cos4 θ S33 + cos2 θ(1 − cos2 θ)(2S13 + S44)
, (9)

where Si j are elastic compliance constants and θ is the angle between the c-axis and any
arbitrary direction. As can be seen in figure 1, the amplitude of EY(θ) of LaNi5H7 is markedly
decreased due to the inner displacements associated with the deformation. However, the
orientational dependence of EY(θ) of LaNi5H7 with and without relaxation is almost the
same. Young’s modulus for the c-axis direction (θ = 0◦) is not substantially different from
that at θ = 90◦ in LaNi5H7. It shows a small hollow at θ = 45◦. This small hollow is due
to the fact that C44 becomes smaller than C66 by hydrogenation. On the other hand in LaNi5,
Young’s modulus is more anisotropic: it is approximately 30% greater for θ = 0◦ than for
θ = 90◦. In the next section, we will discuss the causes of these features. First, we will
investigate the electronic mechanism behind the difference in elastic anisotropy between the
two crystals. Then, the effect of inner displacements on elastic constants will be examined.
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Finally, the theoretical results are discussed from the viewpoint of chemical bondings, on the
basis of first principles molecular orbital calculations using model clusters.

Bereznitsky et al [33] reported a rough estimation for the ratio of elastic constants between
LaNi5 and its hydride from the heat capacity of the hydride using the Debye theory. They
estimated the ratio to be 0.46. Although the tendency that the hydride is softer than LaNi5
agrees with our theoretical results, the ratio is much smaller than that can be expected from
our theoretical results. The reason for the underestimation is not clear. However, it may be
ascribed to the formation of lattice defects during the hydrogenation process. Many kinds of
lattice defects are known to be introduced in the hydrogenation process.

4. Discussion

4.1. Origin of smaller elastic anisotropy in La Ni5 H7

When hydrogen atoms enter the interstitial sites, electronic structures and thus chemical
bonding should be changed. In the previous section, we found that the elastic anisotropy
became smaller when hydrogen atoms are accommodated. It is natural that this difference is
related to the changes in the bonding by the hydrogenation. In this section we discuss the
electronic mechanism.

Formation of chemical bonds can be visualized by plotting the difference between a self-
consistent charge density of a compound and the sum of charge densities of isolated atoms
constituting the compound. The charge differences in two crystals are shown in figure 2. They
are shown as the contour map on a (112̄0) plane and the three-dimensional iso-surface plot.
In the figure of atomic arrangement of LaNi5H7, different hydrogen sites are denoted by t1,
t2, and o. They are the same notation as we used previously [5]. We can see LaNi5 has its
charge accumulated in the hexahedral cage comprised of Ni atoms. This charge is distributed
along the c-axis. This indicates that the Ni–Ni bond is stronger along the c-axis than that on
the ab-plane. This should be the electronic mechanism behind the strong elastic anisotropy of
LaNi5.

On the other hand, electrons are distributed spherically and centred at the hydrogen atoms
in the hydride. As the trade-off, the charge in the Ni cage is diminished. In other words,
the charge accumulated within the Ni sub-lattice of LaNi5 is transferred and redistributed
spherically around the H atoms in LaNi5H7. The charge distribution of the hydride is no longer
anisotropic along the c-axis. The change in the charge distribution due to the hydrogenation
suggests that Ni–Ni bonds with strong directionality are weakened to make Ni–H bonds that
have little directionality. This should be responsible for the smaller elastic anisotropy in
LaNi5H7. The differences in the chemical bondings will be quantitatively discussed later.

As for the bonds of LaNi5H7, a TB-LMTO (tight-binding linearized muffin-tin orbitals)
study has been reported by Nakamura et al [14]. They found that the bond energy of
the interstitial hydrogen can be well described within the second moment approximation,
suggesting that the directionality of bonding could be smeared out in LaNi5H7. The present
results confirm their hypothesis. However, no comparison has thus far been made between
LaNi5 and LaNi5H7. Elastic constants have also not been discussed.

4.2. Inner displacements associated with the deformation of La Ni5 H7

We have found that inner displacements in LaNi5H7 considerably reduce the calculated elastic
constants. A simple way to evaluate the magnitude of the inner displacements is to take into
account the bond lengths before and after the inner displacements, i.e., d∗

AB and dAB. The
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Figure 2. The spatial distribution of bonding charge for (left) LaNi5 and (right) LaNi5H7. The
top panels are contour maps on a (112̄0) plane, while the middle panels are three-dimensional
iso-surface plots (iso-value at 0.05 electrons Å−3). The bottom panels show the corresponding
atomic arrangements.

(This figure is in colour only in the electronic version)

original bond length before the deformation is denoted by d0
AB. The magnitude of the inner

displacement can then be characterized as dAB − d∗
AB for example. If the inner displacement
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Table 2. Two parameters of inner displacements, λAB and ζAB as compared with the reduction of
the elastic constants due to inner displacements, �C .

Deformation
mode �E/V to O(α2) λNiNi λNiLa λNiH λLaH ζNiNi ζNiLa ζNiH ζLaH �C (GPa)

LaNi5H7

# 1 C11 + C12 0.03 0.02 −0.37 0.21 0.00 −0.03 0.44 0.02 −50
# 2 C33/2 0.00 −0.02 −0.10 0.00 0.00 — 0.43 −0.01 −21
# 3 C11 − C12 0.00 0.03 −0.24 0.00 0.00 −0.03 0.67 −0.02 −30
# 4 2C44 = 2C55 0.04 −0.08 −0.09 −0.05 −0.01 0.23 0.76 0.26 −34
# 5 C11 + 2C33 + C12 − 4C13 0.04 −0.02 −1.26 −0.31 0.01 0.07 0.83 0.18 −185
# 6 9/2B 0.02 −0.07 −0.25 0.41 0.00 0.04 0.19 −0.17 −46

LaNi5
# 1 C11 − C12 0.00 −0.01 — — 0.00 0.01 — — −1
# 2 2C44 = 2C55 0.00 0.00 — — 0.00 0.00 — — 0

takes place in order to release the energy expense associated with bond expansion or contraction,
dAB may be close to d0

AB. As a result, dAB − d∗
AB may approach d0

AB − d∗
AB. A pioneering

work on evaluating the inner displacement was performed by Kleinman for the diamond-type
structure under trigonal strain [34]. He defined an internal strain parameter ζ . According to
his definition, ζ = 1 corresponds to the case with rigid bond length, i.e., dAB = d0

AB, whereas
ζ = 0 means no inner displacement, i.e., dAB = d∗

AB. Applying Kleinman’s idea to our
crystals, which have more complicated structures and many kinds of bonds, we newly define
a parameter ζAB as

ζAB = 1

nAB

nAB∑
i=1

dAB,i − d∗
AB,i

d0
AB,i − d∗

AB,i

, (10)

where nAB is the number of bonds. This parameter provides information on the average inner
displacement of each bond. Some bonds do not change their length even before the inner
displacements, i.e., d∗

AB,i = d0
AB,i . Those bonds having (d∗

AB,i − d0
AB,i)/d0

AB,i smaller than
0.5% were eliminated from the summation in equation (10) in order to avoid numerical errors.

The parameter ζAB is defined entirely from the viewpoint of bond length. In order to
enable comparison with the elastic constants, a parameter having the same dimension as the
elastic constants may be more useful. The energy associated with the deformation of each
bond is proportional to the squared strain, i.e., [(dAB − d0

AB)/d0
AB]2. The relaxation energy

due to the recovery of the bond length can therefore be related to the difference between
[(dAB − d0

AB)/d0
AB]2 and [(d∗

AB − d0
AB)/d0

AB]2. The average value for the AB bond, as defined
by

λAB = 1

α2

1

nAB

nAB∑
i

[(
dAB − d0

AB

d0
AB

)2

−
(

d∗
AB − d0

AB

d0
AB

)2]
, (11)

may be comparable to the reduction of the elastic constants, assuming linear elasticity for each
bond.

Two kinds of parameters ζAB and λAB are calculated for the six deformation modes given
by equations (2)–(7). The results are shown in table 2. Here we consider the Ni–Ni, Ni–H,
Ni–La and La–H bonds within lengths of 2.80, 1.70, 3.30 and 2.80 Å, respectively. The elastic
constants and their coefficients corresponding to the deformation modes are chosen such that
all deformations can be scaled by the same strain α. ζAB and λAB in table 2 are average values
calculated with α = +1 and −1%. As can be seen in table 2, the inner displacements occur



Elastic constants and chemical bonding of LaNi5 and LaNi5H7 by first principles calculations 6557

Figure 3. Changes in bond lengths associated with two kinds of deformation mode as shown
by Kleinman’s parameter, ζ . (a) Deformation mode of #1 C11 + C12 and (b) that of #5
C11 + 2C33 + C12 − 4C13 with the strain parameter α = −1%.

mostly on the Ni–H bonds and, to a lesser extent, on the La–H bonds. It is interesting that
little inner displacement takes place for the Ni–Ni bonds for all kinds of deformation modes.
The Ni–La bonds also show only small displacements. The reduction of elastic constants
due to the inner displacements, �C , is also shown in table 2. A good correlation can be
seen between λNiH and �C . Although some non-negligible values can be seen in λLaH, the
correlation between λLaH and �C is much worse. On the other hand, the correlation of �C
with ζNiH is worse than that with λNiH. Nor is there a good correlation between ζLaH and
�C . For LaNi5, both Ni–Ni and Ni–La bonds show very small displacements, in agreement
with small �C . Changes in bond length associated with two kinds of deformation modes
are shown in figure 3. Gray arrows indicate the direction of external strains. Kleinman’s
parameter, ζ = (d − d∗)/(d0 − d∗), is shown for the bonds near hydrogen. In figure 3, rigid
bonds with ζ > 50% are highlighted by thick sticks. According to the definition, ζ = 0 when
no inner displacement takes place. ζ = 100% when significant inner displacement occurs to
recover the displacement by the external stress. In other words, ζ = 100% when the bond
is perfectly rigid. All rigid bonds are those of Ni–H. All Ni–Ni bonds are found not to be
rigid. They deform so as to follow the external strain. The relative displacements of hydrogen
atoms due to the inner displacement are denoted by black arrows. They are drawn under the
condition that the centres of the metal atoms are set at the same position before and after the
inner displacements. Hydrogen atoms move so as to keep the Ni–H bond length unchanged.

The present results show that the inner displacements of LaNi5H7 associated with the
deformation are predominantly due to the movement of hydrogen atoms. The reduction in
the elastic constants due to these inner displacements can be mainly ascribed to the relief of
strain energy in the Ni–H bonds. They clearly indicate that the Ni–H bonds play major roles
in determining elastic properties and therefore bonding mechanism of LaNi5H7. In the next
section, we evaluate the magnitude of chemical bond strength on the basis of atomic orbital
representation.

4.3. Chemical bondings of La Ni5 and La Ni5 H7

It has been suggested that the formation of Ni–H bonds plays a major role in both the
disappearance of the elastic anisotropy and the inner displacements. Intuition of chemical
bondings can be clearly given when wavefunctions are described by the linear combination
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of atomic orbitals. The magnitude of covalent bond strength can be given by bond overlap
populations following Mulliken’s method [35]. In principle, wavefunctions described by plane-
wave basis sets can be projected to any kind of atomic orbital set. In the present study, however,
we have adopted a different set of calculations using a first principles cluster method. We have
a lot of experience in analysing chemical bondings of many kinds of compound including
a series of transition metal compounds by this method [36]. The abundance of systematic
calculations using this method provides us with confidence in the reliability of the population
analysis.

In the present study, we have employed model clusters composed of approximately 70
metal atoms. First principles calculations were made, using the program code SCAT [37].
This uses local density approximation (LDA) and numerical atomic orbitals as basis functions.
The density of states (DOS) was obtained by summing local partial densities of states of atoms
located at the centre of the cluster. The overlap population diagram (OPD) for the A–B bond
can be obtained by plotting an overlap population at each energy level. Both DOS and OPD
were obtained using a Gaussian function of 1.0 eV FWHM to broaden discrete eigenvalues
and are shown in figure 4.

We compared the strength of covalent bonding between LaNi5 and LaNi5H7 using the
following quantity:

ρAB = 1

V

∑
i

NAB(i) QAB(i), (12)

which is called the covalent bond density [36]. In equation (12), NAB(i) is the number of
A–B bonds in the unit cell at the i th nearest-neighbour distance, QAB(i) is the bond overlap
population of the bonds, and V is the unit cell volume. The summation was performed for
bonds having QAB(i) > 0.01. Figure 5 shows the covalent bond density for two crystals. It
is seen that the covalent bond density of the Ni–Ni bond decreases significantly from 0.055
to 0.025 Å−3 with hydrogenation. As a trade-off with the loss of the Ni–Ni bonds, the Ni–H
bonds show the greatest contribution to the total covalent bond density of LaNi5H7. Both La–
La and La–H bonds contribute little. This result is consistent with the hypothesis used in our
previous paper [5] in which the preferable H-sites in the LaNi5–H systems were discussed. The
contributions of La 4f–Ni 3spd, La 4f–La 4f5d6sp and La 4f–H 1s interactions to ρLaNi and ρLaH

were calculated to be 2 and 1% for LaNi5 and LaNi5H7, respectively. These contributions are
so small that the inclusion of La 4f states (which are ignored in the PWPP calculations) within
the LCAO method should not significantly affect the covalent density analysis in figure 5.

In the DOS of LaNi5H7, the valence band shows two regions. H 1s states can be found in
the lower part of the valence band centred at −7 eV. Small contributions of Ni 3d and Ni 4sp
orbitals can be found in the lower valence band. The upper part of the valence band is mainly
composed of Ni3d states. The contribution of H 1s to the upper valence band is very small.
These features of the valence band DOS agree with previous LMTO-ASA results [11]. La 4f
states are almost unoccupied and strongly localized around 2 eV above EF, which is consistent
with their small contribution to the covalent bond density.

The OPDs in figure 5 provide detailed information on interactions between the orbitals.
Ni and H strongly interact in a bonding manner in the lower valence band. Bonding between
Ni–Ni and Ni–La can be seen in the upper valence band. When the OPD of Ni–Ni for the
hydride is compared with that of the host, we can see that the magnitude of the Ni–Ni bonds
is markedly reduced even in the upper valence band below −3 eV. This is the reason for the
decrease in the covalent bond density of Ni–Ni in the hydride.

From the investigation on the chemical bond strength in the two compounds, we found clear
evidence that the major bonds are changed from Ni–Ni to Ni–H by the hydrogenation. This
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Figure 4. Total and partial density of states and OPD of (top) LaNi5 and (bottom) LaNi5H7 obtained
by the molecular orbital method. The OPDs are shown for Ni–Ni and La–Ni bonds in LaNi5, and
for Ni–Ni, La–Ni and Ni–H bonds in LaNi5H7. In the OPD right-hand and left-hand sides of the
horizontal axis indicate bonding and anti-bonding interactions, respectively.

Figure 5. Covalent bond densities in LaNi5 and LaNi5H7 obtained using molecular orbital
calculations.

strongly supports the discussion on the changes in the elastic constants during hydrogenation
given in the previous sections. In section 4.1, we have discussed the elastic anisotropy from
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the viewpoint of the charge distribution. Electronic charge accumulated in the interstices of
the Ni sub-lattice of LaNi5 is transferred and redistributed around the H atoms in the hydride.
The charge redistribution is consistent with the change in dominant bonds. In section 4.2,
we found a good correlation between the inner displacements of Ni–H bonds, λNiH, and the
decrements of elastic constants, �C . The reduction in the elastic constants due to the inner
displacements can be predominantly ascribed to the movement of hydrogen atoms to relieve
the strain energy in the Ni–H bonds. The large covalent bond density of Ni–H in the hydride,
as found in this section, should account for the considerable energy relief.

5. Conclusions

We have used an ab initio pseudopotential method with a plane wave basis to investigate the
elastic properties of LaNi5 and its hydride. Our results can be summarized as follows.

(1) All independent elastic constants of LaNi5 and its hydride, LaNi5H7, were calculated from
the total energy–strain curves. The absolute values of the calculated elastic constants of
LaNi5 were systematically greater than the experimental values by 10–18%. However,
the relative values among Ci j s were in satisfactory agreement.

(2) The elastic anisotropy in LaNi5 is found to be diminished in its hydride. In LaNi5, charge
is found to be accumulated in the interstices of the Ni sub-lattice, which is distributed
along the c-axis. This indicates that the bonding in LaNi5 is stronger along the c-axis
than on the ab plane. On the other hand, in LaNi5H7, electrons are distributed much
more spherically centred at the hydrogen atoms. This is proposed to be the electronic
mechanism behind the smaller elastic anisotropy in LaNi5H7 as compared to LaNi5.

(3) Inner displacements associated with external strain were found to be significant only
in LaNi5H7. Without inclusion of the inner displacement, elastic constants cannot be
evaluated properly. Detailed analysis of the bond lengths in deformed crystals revealed
that hydrogen atoms located at low-symmetry sites move in order to maintain the Ni–H
bond lengths during deformation. Little inner displacement can be found for Ni–Ni and
Ni–La bonds even in LaNi5H7. The reduction of the elastic constants due to the inner
displacements can be well correlated with the magnitude of the inner displacements.

(4) An extra set of first principles cluster calculations were made in order to evaluate the
magnitude of chemical bondings in LaNi5 and LaNi5H7. Ni–H bonds were found to be
dominant in LaNi5H7 as a result of a trade-off with Ni–Ni and Ni–La bonds in LaNi5.
This result is consistent with our discussion on the origin of smaller elastic anisotropy as
well as the origin of inner displacements in LaNi5H7.
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